Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ultrasonic powering is an emerging power source for implantable microdevices due to its superior efficiency in energy transfer at millimeter-scale, long operation distance, and near omnidirectionality. In this paper, we investigate a novel polyhedral ultrasound transducer with emphasis on angular alignment between piezoelectric poling vector and incident waves. Three different polyhedrons (i.e., sphere, octahedron, and dodecahedron) are fabricated via 3D printing lead-free barium titanate ceramic. The maximum output voltage for a unit area occurred at 0° when the poling and waves direction aligned, which were measured to be 0.677±0.071,1.058±0.049 , and 0.709±0.092 V , respectively. At the extreme angular misalignment at 90° (poling and waves perpendicular to each other), only the dodecahedron could sustain the voltage output with 21% reduction, whereas sphere and octahedron dropped by 46%. The results imply that the geometry factor may overcome the poling vector, enabling omnidirectional ultrasonic powering for implantable microdevices.more » « less
- 
            This paper reports on a novel transducer for wireless biochemical sensing. The bilayer transducer consists of a fractal piezoelectric membrane and pH-sensitive chemo-mechanical hydrogel, which overcomes many shortcomings in the chemical and biochemical sensing. The fractal design on the piezoelectric membrane enhances frequency response and linearity by employing periodically repeated pore architecture. As a basis of the pore, a Hilbert space-filling curve with modifications is used. On the surface of the fractal piezoelectric membrane, the hydrogel is laminated. When the bilayer transducer is introduced to a pH environment (e.g., pH = 4, 8, and 12), the hydrogel swells (or shrinks) and induces the curling of the bilayer transducer (10.47°/pH). The curvature then exhibits various ultrasound responses when the bilayer transducer was excited. The measured voltage outputs using an ultrasonic receiver were 0.393, 0.341, 0.250 mV/cm 2 when curvature angles were 30°, 60°, and 120°, respectively. Overall pH sensitivity was 0.017 mV/cm 2 /pH. Ultimately, the biochemical sensing principle using a novel bilayer ultrasound transducer suggests a simple, low-cost, battery-less, and long-range wireless readout system as compared to traditional biochemical sensing.more » « less
- 
            null (Ed.)Wireless monitoring of the physio-biochemical information is becoming increasingly important for healthcare. In this work, we present a proof-of-concept hydrogel-based wireless biochemical sensing scheme utilizing ultrasound. The sensing system utilizes silica-nanoparticle embedded hydrogel deposited on a thin glass substrate, which presents two prominent interfaces for ultrasonic backscattering (tissue/glass and hydrogel/glass). To overcome the effect of the varying acoustic properties of the intervening biological tissues between the sensor and the external transducer, we implemented a differential mode of ultrasonic back-scattering. Here, we demonstrate a wireless pH measurement with a resolution of 0.2 pH level change and a wireless sensing range around 10 cm in a water tank.more » « less
- 
            Abstract Cisplatin, the first platinum chemotherapy agent to obtain Food and Drug Administration (FDA) approval in 1978, is widely used for a number of cancers. However, the painful side effects stemming from systemic delivery are the inevitable limitation of cisplatin. A possible solution is regional chemotherapy using various drug delivery systems, which reduces the systemic toxicity and increases drug accumulation in the tumor. In this paper, a rice‐grain sized, ultrasonically powered, and implantable microdevice that can synthesize cisplatin in situ is presented. The microdevice produces 0.7 mg of cisplatin within 1 h under ultrasonic irradiation (400 mW cm−2). The effect of the microdevice‐synthesized cisplatin is evaluated using in vitro murine breast cancer cells and ex vivo liver tissue. The results suggest that cytotoxic activities of the microdevice‐mediated cisplatin delivery are significantly higher in both in vitro and ex vivo experiments. Overall, the proposed cisplatin synthesis microdevice represents a strong alternative treatment option for regional chemotherapymore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
